qat.opt.GraphPartitioning
- class qat.opt.GraphPartitioning(graph, A, B=1, **kwargs)
Specialization of the
Ising
class for Graph Partitioning.For right encoding we need \(\frac { A } { B } \geq \frac { min(2D, N) } { 8 }\) with \(D\) - the maximal degree of a node in the graph and \(N\) - the number of nodes.
import numpy as np import networkx as nx from qat.opt import GraphPartitioning graph = nx.Graph() graph.add_nodes_from(np.arange(10)) graph.add_edges_from([(0,1), (0,4), (0,6), (1,2), (1,4), (1,7), (2,3), (2,5), (2,8), (3,5), (3,9), (4,6), (4,7), (5,8), (5,9), (6,7), (7,8), (8,9)]) B = 2 A = 5 graph_partitioning_problem = GraphPartitioning(graph, A, B=B) print("To anneal the problem, the solver would need " + str(len(graph.nodes())) + " spins.")
To anneal the problem, the solver would need 10 spins.
- Parameters
graph (networkx.Graph) – a networkx graph
A (double) – a positive constant by which the terms inside \(H_A\) from \(H = H_A + H_B\) are multiplied. This equation comes from the Hamiltonian representation of the problem.
B (optional, double) – similar to \(A\), \(B\) is a positive factor for the \(H_B\) terms, default is 1
- get_best_parameters()
- Returns
6-key dictionary containing
n_monte_carlo_updates (int) - the number of Monte Carlo updates
n_trotters (int) - the number of “classical replicas” or “Trotter replicas”
gamma_max (double) - the starting magnetic field
gamma_min (double) - the final magnetic field
temp_max (double) - the starting temperature
temp_min (double) - the final temperature
- parse_result(result, inverse=False)
Returns the best approximated solution of the Graph Partitioning problem from a list of samples
- Parameters
result (
BatchResult
) – BatchResult containing a list of samples- Returns
The best balanced partition among the samples with the minimum cut size
- Return type
- qat.opt.graph_partitioning.produce_j_h_and_offset(graph, A, B=1)
Returns the \(J\) coupling matrix of the problem, along with the magnetic field \(h\) and the Ising energy offset. For right encoding we need \(\frac{A}{B} \geq \frac{min(2D, N)}{8}\) with \(D\) - the maximal degree of a node in the graph and \(N\) - the number of nodes.
- Parameters
graph (networkx.Graph) – a networkx graph
A (double) – a positive constant by which the terms inside \(H_A\) from \(H = H_A + H_B\) are multiplied. This equation comes from the Hamiltonian representation of the problem.
B (optional, double) – similar to \(A\), \(B\) is a positive factor for the \(H_B\) terms, default is 1