qat.qpus.CNoisy
This QPU is written as a thin python wrapper around qat.qpus.CLinalg
.
Please see CLinalg
’s documentation for more information on the internal methods of this
simulator.
High-level Quantum Processing Unit
- class qat.qpus.CNoisy(mode: str = 'deterministic', hardware_model: HardwareModel | None = None, tol_spam_reconstruction=1e-10, use_gpu: bool = False, use_nbthreads_heuristic: bool = True, precision: int = 2, sparse: bool = False, tqdm: bool = False, fusion: bool = True, seed: int | None = None)
CNoisy simulator
- Parameters:
mode (str) – Simulation mode Default: “deterministic”
hardware_model (HardwareModel) – Hardware model describing the noisy model
use_gpu (bool) – use the GPU backend (may not be available on your version of NewLinAlg) Default: False
use_nbthreads_heuristic (bool) – use heuristic for choosing the number of threads setting this parameter to False will result in using OMP_NUM_THREADS Default: True
precision (int) – precision used for the simulation, either 1(single) or 2(double) Default: 2
sparse (bool) – whether or not to return a sparse result Default: False
tqdm (bool) – use tqdm to display progress in simulating the circuit Default: False
fusion (bool) – use the FusionPlugin as a pre-processing step, merging gates together (only for at least 23 qubits) Default: True
seed (int) – seed of the random number generator Default: None (will use a random seed)
- submit(batch: Batch, meta_data: dict = None) BatchResult
Executes a batch of jobs and returns the corresponding list of Results.
- Parameters:
batch (
Batch
) – a batch of jobs. If a single job is provided, the job is embedded into a Batch, executed, and the first result is returned.- Returns:
a batch result
- Return type:
This high-level class wrapping the simulator follows the convention
of the qat.qpus.QPUHandler
structure.