Noisy simulations on GPU¶
Noisy simulations running in "stochastic" mode can be offloaded to run on a GPU. As in the case of ideal simulations, to use the GPU based simulator, it is sufficient to set the fields "use_GPU" (to 'True') and "precision" (to either 1 or 2) while initializing the 'NoisyQProc'. In this notebook we show some use cases, where we obtain a speedup in running the simulations on a GPU.
import numpy as np
from qat.core import Observable, Term
from qat.lang.AQASM import Program
from qat.lang.AQASM.qftarith import QFT
from qat.hardware import DefaultHardwareModel
from qat.quops.quantum_channels import ParametricAmplitudeDamping, ParametricPureDephasing
from qlmaas.noisy.noisy_simulation import compute_fidelity
from qlmaas.qpus import NoisyQProc
As an example, we consider the Quantum Fourier Transform (QFT) circuit and we suppose a simple noise model with idle qubits subject to parametric amplitude damping.
nqbits = 14
prog = Program()
reg = prog.qalloc(nqbits)
prog.apply(QFT(nqbits), reg)
circ = prog.to_circ()
hardware_model = DefaultHardwareModel(gate_times = {"H": 0.2, "C-PH": lambda angle:0.65},
idle_noise = [ParametricAmplitudeDamping(T_1 = 75)])
Here we choose to run the simulation with 1000 samples and initialize the NoisyQProc with different arguments to compare the output and their respective runtimes.
n_samples = 1000
noisy_qpu_gpu_single = NoisyQProc(hardware_model=hardware_model, sim_method="stochastic",
n_samples=n_samples, use_GPU=True, precision=1)
noisy_qpu_gpu_double = NoisyQProc(hardware_model=hardware_model, sim_method="stochastic",
n_samples=n_samples, use_GPU=True, precision=2)
noisy_qpu_cpu = NoisyQProc(hardware_model=hardware_model, sim_method="stochastic", n_samples=n_samples)
I Fidelity of noisy QFT¶
%%time
fid_cpu, err_cpu = compute_fidelity(circ, noisy_qpu_cpu) # Simulation running on 1 node (cpu)
print(fid_cpu, err_cpu)
Submitted a new batch: Job142 0.9022484675077165 0.01084734611516293 CPU times: user 7.2 ms, sys: 1.77 ms, total: 8.97 ms Wall time: 6.38 s
%%time
fid_gpu_single, err_gpu_single = compute_fidelity(circ, noisy_qpu_gpu_single) # Simulation running in single precision on a GPU
print(fid_gpu_single, err_gpu_single)
Submitted a new batch: Job151 0.92223502699308 0.010458996997719681 CPU times: user 5.94 ms, sys: 1.46 ms, total: 7.4 ms Wall time: 4.34 s
%%time
fid_gpu_double, err_gpu_double = compute_fidelity(circ, noisy_qpu_gpu_double) # Simulation running in double precision on a GPU
print(fid_gpu_double, err_gpu_double)
Submitted a new batch: Job153 0.899411364443948 0.010742496929485406 CPU times: user 7.31 ms, sys: 2.53 ms, total: 9.85 ms Wall time: 4.3 s
Here we compare the stochastic results with a deterministic evaluation and check the time it takes to get an exact value.
noisy_qpu_det = NoisyQProc(hardware_model=hardware_model, sim_method="deterministic-vectorized")
%%time
fid_cpu_det, _ = compute_fidelity(circ, noisy_qpu_det) # Deterministic simulation running on 1 node (cpu)
print(fid_cpu_det)
Submitted a new batch: Job155 0.9076533148415739 CPU times: user 130 ms, sys: 26.5 ms, total: 156 ms Wall time: 2min 55s
II Sampling a noisy QFT¶
job = circ.to_job(nbshots=100)
%%time
res_cpu = noisy_qpu_cpu.submit(job)
Submitted a new batch: Job282 CPU times: user 4.09 ms, sys: 441 μs, total: 4.54 ms Wall time: 155 ms
%%time
res_gpu_single = noisy_qpu_gpu_single.submit(job)
Submitted a new batch: Job283 CPU times: user 1.58 ms, sys: 1.36 ms, total: 2.94 ms Wall time: 159 ms
%%time
res_gpu_double = noisy_qpu_gpu_double.submit(job)
Submitted a new batch: Job284 CPU times: user 2.6 ms, sys: 1.86 ms, total: 4.46 ms Wall time: 152 ms
III Observable evaluation¶
Here we generate a random observable with 40 terms and evaluate it
n_terms = 40
terms = ["X", "Y", "Z"]
pauli_terms = []
for _ in range(n_terms):
term = ""
for _ in range(np.random.choice([1, 2], 1)[0]):
term += np.random.choice(terms, 1)[0]
pauli_terms.append(Term(1.0, term, list(np.random.choice(nqbits, len(term), replace=False))))
obs = Observable(nqbits, pauli_terms=pauli_terms)
job_obs = circ.to_job("OBS", observable=obs)
%%time
res_cpu_obs = noisy_qpu_cpu.submit(job_obs)
print(res_cpu_obs.value, res_cpu_obs.error)
Submitted a new batch: Job285 5.468653025447216 0.05213845378318157 CPU times: user 5.28 ms, sys: 2.16 ms, total: 7.44 ms Wall time: 4.34 s
%%time
res_gpu_single_obs = noisy_qpu_gpu_single.submit(job_obs)
print(res_gpu_single_obs.value, res_gpu_single_obs.error)
Submitted a new batch: Job287 5.385818858997139 0.05228878100618755 CPU times: user 5.97 ms, sys: 1.96 ms, total: 7.93 ms Wall time: 4.32 s
%%time
res_gpu_double_obs = noisy_qpu_gpu_double.submit(job_obs)
print(res_gpu_double_obs.value, res_gpu_double_obs.error)
Submitted a new batch: Job290 5.540744469286798 0.052291888233267775 CPU times: user 7.62 ms, sys: 3.27 ms, total: 10.9 ms Wall time: 4.33 s