Noisy simulations on GPU¶
Noisy simulations running in "stochastic" mode can be offloaded to run on a GPU. As in the case of ideal simulations, to use the GPU based simulator, it is sufficient to set the fields "use_GPU" (to 'True') and "precision" (to either 1 or 2) while initializing the 'NoisyQProc'. In this notebook we show some use cases, where we obtain a speedup in running the simulations on a GPU.
import numpy as np
from qat.core import Observable, Term
from qat.lang.AQASM import Program
from qat.lang.AQASM.qftarith import QFT
from qat.hardware import DefaultHardwareModel
from qat.quops.quantum_channels import ParametricAmplitudeDamping, ParametricPureDephasing
from qlmaas.noisy.noisy_simulation import compute_fidelity
from qlmaas.qpus import NoisyQProc
As an example, we consider the Quantum Fourier Transform (QFT) circuit and we suppose a simple noise model with idle qubits subject to parametric amplitude damping.
nqbits = 14
prog = Program()
reg = prog.qalloc(nqbits)
prog.apply(QFT(nqbits), reg)
circ = prog.to_circ()
hardware_model = DefaultHardwareModel(gate_times = {"H": 0.2, "C-PH": lambda angle:0.65},
idle_noise = [ParametricAmplitudeDamping(T_1 = 75)])
Here we choose to run the simulation with 1000 samples and initialize the NoisyQProc with different arguments to compare the output and their respective runtimes.
n_samples = 1000
noisy_qpu_gpu_single = NoisyQProc(hardware_model=hardware_model, sim_method="stochastic",
n_samples=n_samples, use_GPU=True, precision=1)
noisy_qpu_gpu_double = NoisyQProc(hardware_model=hardware_model, sim_method="stochastic",
n_samples=n_samples, use_GPU=True, precision=2)
noisy_qpu_cpu = NoisyQProc(hardware_model=hardware_model, sim_method="stochastic", n_samples=n_samples)
I Fidelity of noisy QFT¶
%%time
fid_cpu, err_cpu = compute_fidelity(circ, noisy_qpu_cpu) # Simulation running on 1 node (cpu)
print(fid_cpu, err_cpu)
Submitted a new batch: Job95
0.9167689670423707 0.010706629465224266 CPU times: user 18.2 ms, sys: 3.28 ms, total: 21.5 ms Wall time: 4.35 s
%%time
fid_gpu_single, err_gpu_single = compute_fidelity(circ, noisy_qpu_gpu_single) # Simulation running in single precision on a GPU
print(fid_gpu_single, err_gpu_single)
Submitted a new batch: Job103
0.9008702860763534 0.010709165578217 CPU times: user 11.7 ms, sys: 3.07 ms, total: 14.7 ms Wall time: 3.15 s
%%time
fid_gpu_double, err_gpu_double = compute_fidelity(circ, noisy_qpu_gpu_double) # Simulation running in double precision on a GPU
print(fid_gpu_double, err_gpu_double)
Submitted a new batch: Job106
0.8891892565265824 0.011057770660084577 CPU times: user 10.4 ms, sys: 3.06 ms, total: 13.5 ms Wall time: 3.25 s
Here we compare the stochastic results with a deterministic evaluation and check the time it takes to get an exact value.
noisy_qpu_det = NoisyQProc(hardware_model=hardware_model, sim_method="deterministic-vectorized")
%%time
fid_cpu_det, _ = compute_fidelity(circ, noisy_qpu_det) # Deterministic simulation running on 1 node (cpu)
print(fid_cpu_det)
Submitted a new batch: Job108
0.9076533148415741 CPU times: user 26.4 ms, sys: 10 ms, total: 36.5 ms Wall time: 1min 26s
II Sampling a noisy QFT¶
job = circ.to_job(nbshots=100)
%%time
res_cpu = noisy_qpu_cpu.submit(job)
Submitted a new batch: Job190 CPU times: user 2.12 ms, sys: 1 ms, total: 3.12 ms Wall time: 150 ms
%%time
res_gpu_single = noisy_qpu_gpu_single.submit(job)
Submitted a new batch: Job193 CPU times: user 733 μs, sys: 2.98 ms, total: 3.71 ms Wall time: 146 ms
%%time
res_gpu_double = noisy_qpu_gpu_double.submit(job)
Submitted a new batch: Job194 CPU times: user 2.76 ms, sys: 978 μs, total: 3.73 ms Wall time: 146 ms
III Observable evaluation¶
Here we generate a random observable with 40 terms and evaluate it
n_terms = 40
terms = ["X", "Y", "Z"]
pauli_terms = []
for _ in range(n_terms):
term = ""
for _ in range(np.random.choice([1, 2], 1)[0]):
term += np.random.choice(terms, 1)[0]
pauli_terms.append(Term(1.0, term, list(np.random.choice(nqbits, len(term), replace=False))))
obs = Observable(nqbits, pauli_terms=pauli_terms)
job_obs = circ.to_job("OBS", observable=obs)
%%time
res_cpu_obs = noisy_qpu_cpu.submit(job_obs)
print(res_cpu_obs.value, res_cpu_obs.error)
Submitted a new batch: Job196
8.916436806579512 0.07487034685757489 CPU times: user 10.4 ms, sys: 2.79 ms, total: 13.1 ms Wall time: 4.22 s
%%time
res_gpu_single_obs = noisy_qpu_gpu_single.submit(job_obs)
print(res_gpu_single_obs.value, res_gpu_single_obs.error)
Submitted a new batch: Job206
8.643254452236231 0.07363705769716893 CPU times: user 12.9 ms, sys: 3.01 ms, total: 15.9 ms Wall time: 3.87 s
%%time
res_gpu_double_obs = noisy_qpu_gpu_double.submit(job_obs)
print(res_gpu_double_obs.value, res_gpu_double_obs.error)
Submitted a new batch: Job215
8.993593331163364 0.07431757550209074 CPU times: user 10.8 ms, sys: 1.92 ms, total: 12.8 ms Wall time: 4.14 s