qat.fermion.chemistry.wrapper.MoleculeInfo
- class qat.fermion.chemistry.wrapper.MoleculeInfo(hamiltonian: MolecularHamiltonian, n_electrons: int, noons: ndarray | List[float], orbital_energies: ndarray)
MoleculeInfo helper class. This class is a even higher level version of the
MolecularHamiltonian
.- Parameters:
hamiltonian (MolecularHamiltonian) – The MolecularHamiltonian of the studied molecule.
n_electrons (int) – Number of electrons.
noons (Union[np.ndarray, List[float]]) – Natural orbital occupation number.
orbital_energies (np.ndarray) – Orbital energies.
- nqbits
The total number of qubits.
- Type:
int
- one_body_integrals
One-body integrals \(I_{uv}\).
- Type:
np.ndarray
- two_body_integrals
Two-body integrals \(I_{uvwx}\).
- Type:
np.ndarray
- constant_coeff
Constant coefficient \(r\) (core repulsion).
- Type:
np.ndarray
- hamiltonian
The
MolecularHamiltonian
of the studied molecule.- Type:
- n_electrons
Number of electrons.
- Type:
int
- noons
Natural orbital occupation number.
- Type:
Union[np.ndarray, List[float]]
- orbital_energies
Orbital energies.
- Type:
np.ndarray
Example
import numpy as np from qat.fermion.chemistry import MolecularHamiltonian, MoleculeInfo # For illustration purpose, initialize random one- and two-body integrals, and a constant one_body_integral = np.random.randn(2, 2) two_body_integral = np.random.randn(2, 2, 2, 2) constant = np.random.rand() noons = list(np.random.randn(10)) orbital_energies = list(np.random.randn(10)) # Define the MolecularHamiltonian mol_h = MolecularHamiltonian(one_body_integral, two_body_integral, constant) # Define MoleculeInfo molecule = MoleculeInfo( mol_h, n_electrons=4, noons=noons, orbital_energies=orbital_energies ) print(molecule)
MoleculeInfo( - MolecularHamiltonian( * constant_coeff : 0.7874458212027329 * integrals shape ** one_body_integrals : (2, 2) ** two_body_integrals : (2, 2, 2, 2) ) - n_electrons = 4 - noons = [np.float64(0.5223002868773575), np.float64(-0.8616132176494687), np.float64(-1.2710065090121807), np.float64(-0.7596140848478499), np.float64(0.7660167624212675), np.float64(-0.7505191983624373), np.float64(1.2436647597328383), np.float64(-0.6940442052234869), np.float64(-0.2493680927122771), np.float64(1.4558028901380051)] - orbital energies = [np.float64(0.6213141037090146), np.float64(0.9174709982979758), np.float64(0.7867535994536635), np.float64(1.0060478221878144), np.float64(-0.14277372012571185), np.float64(0.5976649210066465), np.float64(-1.0337509167706027), np.float64(-0.1888352538404858), np.float64(-0.24629585764896755), np.float64(2.095465378822157)] )
- restrict_active_space(threshold_1: float | None = 0.02, threshold_2: float | None = 0.001)
Same method as the
MolecularHamiltonian
methodselect_active_space()
, except it also modifies all the molecule parameters accordingly (NOONs, orbital energies, and number of electrons).For more information, see
select_active_space()
documentation.- Parameters:
threshold_1 (Optional[float]) – The upper threshold \(\varepsilon_1\) on the NOON of an active orbital.
threshold_2 (Optional[float]) – The lower threshold \(\varepsilon_2\) on the NOON of an active orbital.